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Point processes and rigidity

The most popular model of random point sets is perhaps the
Poisson point process,

which is characterized by spatial
independence.

But some of the most scientifically interesting models of
random point sets are strongly correlated, and in fact many of
them exhibit repulsion. E.g., GUE eigenvalues, zeros of
random polynomials, etc.

The question of spatial conditioning, therefore, becomes a
non-trivial one in these models.

Namely, given a domain D, how does the point configuration
outside of D impact the distribution of the points inside D ?

It turns out that such spatial conditioning leads to remarkable
singularities in the distribution of the points inside the
domain. Roughly speaking, this is what we refer to as rigidity.
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Instances of rigidity

The most basic instance of rigidity is the rigidity of particle
numbers.

Rigidity of particle numbers basically means that the number
of particles in a bounded domain is a (deterministic) function
of the particle configuration outside the domain.

So, this amounts to a local law of conservation of mass : we
are not allowed to perturb the point configuration in ways
that create new particles or delete existing ones !

This has implications in the study of stochastic geometry on
these point processes, notably in the use of Burton and Keane
type arguments, or the “finite energy” property.
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Instances of rigidity

Rigidity of particle numbers has been shown to occur for the
GUE sine kernel process [G.] and the Ginibre ensemble [G. -
Peres].

These are respectively the (distributional limits of)
Hermitian and non-Hermitian i.i.d. Gaussian random matrix
ensembles. The Ginibre ensemble is also the 2D Coulomb gas
at the inverse temperature β = 2.

Rigidity of particle numbers was also established for the zeros
of the planar Gaussian analytic function [G. - Peres]

f (z) =
∞∑
k=0

ξk
zk√
k!
.
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Instances of rigidity

In subsequent works, rigidity of particle numbers was
established for a variety of determinantal point processes
(with projection kernels), particularly in the works of Bufetov,
Qiu, Osada, Shirai ...

These include the Airy, Bessel and
Gamma kernel processes, determinantal processes associated
with generalized Fock spaces, and so forth.

Projection kernel in the above is necessary ! [G.-Krishnapur]
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Rigidity of general obervables

In general, for a point process Π and a bounded domain D, let
us denote by Πin the point configuration inside D, and by
Πout the point configuration outside D.

The observable χ(Πin) is said to be rigid if χ(Πin) is a
deterministic function of Πout .

An important class of examples are linear statistics:

χ(Πin) =
∑
λ∈Πin

ϕ(λ)

for some function ϕ. Setting ϕ = 1D gives the number of
points in D.

Natural to ask about rigidity of more general functionals of a
point process (other than the particle count), particularly
higher moments of the points in D.
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Rigidity of general obervables

Consider zero process the family of Gaussian analytic functions

fα(z) =
∞∑
k=0

ξk
zk

(k!)α/2
.

α = 1 recovers the standard planar case.

For α ∈ ( 1
m ,

1
m−1 ], the first m moments of the zero process

are rigid. [G.-Krishnapur]

These are the only rigid observables !

For the standard planar case (α = 1), this implies that the
total mass as well as the centre of mass of the points in a
bounded domain are determined by the outside point
configuration.

In particular, if there happens to be only one point in a
bounded domain (an event of positive probability), then the
exact location of that point is completely determined by the
outside configuration.
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General picture

Rigidity of particle numbers is connected with suppressed
fluctuation of particle numbers (o(Volume)).

Rigidity of general observables connected with suppressed
fluctuation of other linear statistics.

Rigidity is also connected with faster decay of hole
probabilities and singularity of Palm measures
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General picture

(Moment-matching) [G.] Consider a point process Π having
precisely the first m moments rigid, and two collections of
points ζ = (ζ1, · · · , ζk) and η = (η1, · · · , ηl). Then Palm
measures [Π]ζ and [Π]η are mutually absolutely continuous iff
the first m moments of ζ and η match,

and the two Palm
measures are mutually singular otherwise.

However, very few rigorous theorems establishing general
implications like the above between these concepts.
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Conditioning on a large hole

We say that the disk D is a hole if there are no particles inside
D.

We look at the conditional distribution of points outside D
given that D is hole.

When radius(D) →∞, how does the outside configuration
behave ?

In other words, what causes a large hole (a rare event) to
occur ?

The most interesting scale to look at this question turns out
to be the scale when the “hole” is rescaled to have size 1.
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Conditioning on a large hole: the Ginibre ensemble

This question was investigated by Jancovici, Lebowitz and
Manificat for the Ginibre ensemble.

What they showed was :

Ginibre Ensemble
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Conditioning on a large hole: the GUE process

This question was investigated by Majumdar, Nadal,
Scardicchio and Vivo for the GUE process.

What they showed
was :

GUE
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Appearance of a “Forbidden region” in Gaussian zeros

We consider this problem for the zeros of the standard planar
Gaussian analytic function.

We show that :

Gaussian Zeros
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Appearance of a “Forbidden region” in Gaussian zeros

Theorem (G.- Nishry)

The conditional intensity for zeroes of Gaussian random
polynomials has the following behaviour:

There is a singular component at the edge of the hole

There is subsequent “forbidden region”, namely, in the
annulus R < r <

√
eR, the conditional intensity → 0 as

R →∞.

Beyond
√
eR, the conditional intensity behaves, in the limit

R →∞, like the equilibrium intensity.
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Forbidden region
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Heuristics

Large deviations for (empirical measures of) zeros of (the
polynomial truncations of) the Gaussian analytic function
(inspired by Zelditch-Zeitouni)

If Z is a (the empirical
measure of) a configuration of zeros, then
P(Z ) ≈ exp(−R4I (Z )). I is the LDP rate function.

No zeros in the hole D is the same as Z (D) = 0.

To find the “most likely configuration” given that there is hole
is roughly the same as minimizing the rate functional I over
the space of probability measures (on C) under the constraint
that there is zero mass on D.
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Heuristics

Constrained optimization problem on the space of probability
measures.

The functional to be optimized is highly non-smooth :

I (µ) = 2 sup
z∈C

{
Uµ(z)− |z |

2

2

}
− Σ(µ)− C ,

where Uµ is the logarithmic potential and Σ(µ) is the
logarithmic energy of the measure µ and C is a constant. No
clear variational method available. Tackled by “guessing” the
solution and then establishing that it is indeed the minimizer
using potential theoretic methods.

Heuristics made rigorous by obtaining “effective” versions of
large deviation estimates and approximating the analytic
function zeros by those of the polynomials.
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Stealthy random fields

Recently, stealthy particle systems (and more generally,
stealthy random fields) have gained significant attention in
condensed matter physics, c.f. works of Torquato, Stillinger,
Batten, Zhang, Chertkov, Car, DiStasio ...

Stealthy ⇐⇒ the spectrum of the process (i.e., the Fourier
transform of the two-point correlation) has a “gap”, namely it
vanishes in a neighbourhood of the origin.

Nomenclature “stealthy” because such systems are invisible to
diffraction experiments with waves having frequency inside the
“gap”.

Stealthy particle systems conjectured to have deterministically
bounded holes [Zhang-Stillinger-Torquato].
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Stealthy random fields

Theorem (G.-Lebowitz)

Stealthy random fields (i.e., random fields with a spectral
gap) exhibit maximal rigidity : namely, the process inside a
bounded domain is a deterministic function of the process
outside the domain.

Same conclusion holds if, instead of having a gap, the spectral
density decays fast enough (faster than any polynomial) at the
origin.

Special case : Guassian process with a gap (or fast decay) in the
spectrum
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Stealthy random fields

Theorem (G.-Lebowitz)

(Bounded holes) Holes in a stealthy particle system are
bounded deterministically

with a universal upper bound that is
inversely proportional to the size of the spectral gap.

(Anti-concentration) The particle number in a domain is
bounded deterministically by (a constant multiple of) the
expected number of points in the domain.
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Heuristics

The existence of a gap / fast decay in the spectrum can be
exploited to construct linear functionals of the process which
have low variance.

A linear functional with a low variance is approximately
constant, so this gives an approximate linear constraint

Sufficiently rich class of such constraints can be exploited to
deduce degenerate behaviour.
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Thank you !!
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